$\gamma = 98.135 \ (2)^{\circ}$

Z = 2

V = 1024.67 (8) Å³

Mo *K* α radiation $\mu = 3.07 \text{ mm}^{-1}$

T = 100.0 (1) K

 $R_{\rm int}=0.039$

 $0.13 \times 0.11 \times 0.10 \text{ mm}$

19338 measured reflections

5964 independent reflections

4532 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

{2-[(2-Aminophenyl)iminomethyl]-4bromophenolato- $\kappa^3 N, N', O$ }chloridobis(dimethyl sulfoxide- κS)ruthenium(II)

Naser Eltaher Eltayeb,^a‡ Siang Guan Teoh,^a Suchada Chantrapromma,^b§ Hoong-Kun Fun^c* and Kamarulazizi Ibrahim^d

^aSchool of Chemical Science, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^dSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 22 July 2007; accepted 30 July 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.006 Å; R factor = 0.041; wR factor = 0.105; data-to-parameter ratio = 23.3.

The title compound, $[Ru(C_{13}H_{10}BrN_2O)Cl(C_2H_6OS)_2]$, shows a distorted octahedral Ru^{II} coordination with the N_2O tridentate Schiff base ligand and one dimethyl sulfoxide (DMSO) molecule bonded in the equatorial plane, and the Cl and another DMSO ligand occupying the axial positions. In the crystal structure, molecules are linked by $N-H\cdots$ Cl and $N-H\cdots$ O hydrogen bonds into one-dimensional chains along the [100] direction. The crystal structure is further stabilized by weak $C-H\cdots$ O and $C-H\cdots$ Cl interactions. $C-H\cdots\pi$ interactions are also observed in the crystal structure.

Related literature

For related structures, see, for example: Calligaris (2004); Otero *et al.* (2003); Rusanova *et al.* (2006). For related literature on Schiff base coordination complexes and applications of Ru^{II} complexes, see: Eltayeb *et al.* (2007*a,b*); Kovacs *et al.* (2007); Liu *et al.* (2007); Lyons *et al.* (1998); Otero *et al.* (2003). For bond length data, see: Allen *et al.* (1987).

Experimental

Crystal data

 $[Ru(C_{13}H_{10}BrN_2O)Cl(C_2H_6OS)_2]$ $M_r = 582.92$ Triclinic, $P\overline{1}$ a = 8.1302 (3) Å b = 12.0908 (4) Å c = 12.2445 (6) Å $\alpha = 115.774$ (3)° $\beta = 101.712$ (3)°

Data collection

Bruker SMART APEX II CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2005) *T*_{min} = 0.686, *T*_{max} = 0.755

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.041 & \text{H atoms treated by a mixture of} \\ wR(F^2) = 0.105 & \text{independent and constrained} \\ S = 1.07 & \text{refinement} \\ 5964 \text{ reflections} & \Delta\rho_{\text{max}} = 1.25 \text{ e } \text{\AA}^{-3} \\ 256 \text{ parameters} & \Delta\rho_{\text{min}} = -0.96 \text{ e } \text{\AA}^{-3} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 benzene rings, respectively.

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
0.95 (5)	2.34 (5)	3.235 (4)	157 (4)
0.91 (5)	2.22 (5)	2.975 (5)	141 (4)
0.93	2.58	3.267 (5)	131
0.93	2.40	3.323 (6)	174
0.93	2.35	3.263 (5)	168
0.96	2.83	3.222 (4)	106
0.96	2.73	3.634 (5)	157
0.96	3.09	3.561 (5)	112
	<i>D</i> -H 0.95 (5) 0.91 (5) 0.93 0.93 0.93 0.93 0.96 0.96 0.96	$\begin{array}{c cccc} D-H & H\cdots A \\ \hline 0.95 \ (5) & 2.34 \ (5) \\ 0.91 \ (5) & 2.22 \ (5) \\ 0.93 & 2.58 \\ 0.93 & 2.40 \\ 0.93 & 2.35 \\ 0.96 & 2.83 \\ 0.96 & 2.73 \\ 0.96 & 3.09 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Symmetry codes: (i) -x + 2, -y + 1, -z; (ii) -x + 1, -y + 1, -z; (iii) -x + 2, -y + 1, -z + 1; (iv) x - 1, y, z.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXTL* (Sheldrick, 1998); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

[‡] On study leave from International University of Africa, Sudan. E-mail: nasertaha90@hotmail.com.

[§] Additional correspondence author, email: suchada.c@psu.ac.th.

metal-organic compounds

The authors thank the Malaysian Government, the Ministry of Science, Technology and Innovation, Malaysia (MOSTI), and Universiti Sains Malaysia for the E-Science Fund research grant (PKIMIA/613308) and facilities. The International University of Africa (Sudan) is acknowledged for providing study leave to NEE. The authors also thank Universiti Sains Malaysia for the Fundamental Research Grant Scheme (FRGS) grant No. 203/PFIZIK/671064.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2450).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

- Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Calligaris, M. (2004). Coord. Chem. Rev. 248, 351-375.
- Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007a). Acta Cryst. E63, m1633–m1634.
- Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007b). Acta Cryst. E63, m1672–m1673.
- Kovacs, M., Fodor, L., Brown, W. R. & Horvath, A. (2007). Radiat. Phys. Chem. 76, 1236–1243.
- Liu, P., Tam, W. & Goddard, J. D. (2007). Tetrahedron, 63, 7659-7666.
- Lyons, C. H., Abbas, E. D., Lee, J.-K. & Rubner, M. F. (1998). J. Am. Chem. Soc. 120, 12100–12107.
- Otero, L., Noblia, P., Gambino, D., Cerecetto, H., Gonzalez, M., Ellena, J. A. & Piro, O. E. (2003). *Inorg. Chim. Acta*, **344**, 85–94.
- Rusanova, J., Rusanov, E., Gorelsky, S. I., Christendat, D., Popescu, R., Farah, A. A., Beaulac, R., Reber, C. & Lever, A. B. P. (2006). *Inorg. Chem.* 45, 6246–6262.
- Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Acta Cryst. (2007). E63, m2269-m2270 [doi:10.1107/S160053680703718X]

{2-[(2-Aminophenyl)iminomethyl]-4-bromophenolato- $\kappa^3 N, N', O$ } chloridobis(dimethyl sulfoxide- κS)ruthenium(II)

N. E. Eltayeb, S. G. Teoh, S. Chantrapromma, H.-K. Fun and K. Ibrahim

Comment

Ruthenium chemistry is an interesting branch of chemistry due to the diverse properties of ruthenium and its photophysics and redox chemistry. Ruthenium complexes can be used as catalysts (Liu *et al.*, 2007), luminescence materials (Kovacs *et al.*, 2007), light emitting diodes (Lyons *et al.*, 1998) and against Chagas' disease (Otero *et al.*, 2003). Our current interest in the chemistry of ruthenium complexes is because of its properties as light emitting diodes. As a continuation of our research on Schiff base complexes (Eltayeb *et al.*, 2007*a*; 2007*b*), we extend our studies to the ruthenium complexes with Schiff base ligands and herein the crystal structure of the title compound was reported.

The title complex molecule is characterized by a distort octahedral Ru^{II} coordination, with the N₂O tridentate Schiff-base ligand and one S-DMSO in the basal plane and another S-DMSO and Cl occupied in the axial positions (Fig. 1). The Ru(II) is in the same plane with the N1/N2/O1/S1 basal plane. The cyclic skeleton of the tridentate Schiff-base ligand is not planar as indicated by the dihedral angle between the two benzene rings of 14.5 (2)°. Bond lengths and angles observed in the structure are in normal ranges (Allen *et al.*, 1987). The bond lengths and angles of the Schiff base ligand are comparable with the related structures (Eltayeb *et al.*, 2007*a*; 2007*b*). The Ru—S bond distances [Ru1—S1 = 2.2511 (9)Å and Ru1—S2 = 2.2206 (9) Å] are typical for the complexes of ruthenium with S-coordinated DMSO in the coordination sphere (Calligaris, 2004; Otero *et al.*, 2003). The Cl atom is pushed toward the Schiff-base ligand side of the complex with a S2—Ru1—Cl1 bond angle of 172.75 (3)° for steric reason. The endocyclic N1—Ru1—N2 and N2—Ru1—O1 bond angles are 81.38 (12)° and 93.33 (11)° because of the chelate nature of the ligand.

In the crystal structure of the title compound (Fig. 2), the molecules are connected by N—H···Cl and N—H···O hydrogen bonds into 1-D chains along the [1 0 0] direction. The crystal is stabilized by intermolecular N—H···Cl and N—H···O hydrogen bonds together with weak C—H···O and C—H···Cl interactions (Table 1). C—H··· π interactions are also observed (Table 1); Cg_1 and Cg_2 are the centroids of C1–C6 and C8–C13 benzene rings, respectively.

Experimental

The title compound was synthesized by adding 5-bromo-2-hydroxybenzaldehyde (0.402 g, 2 mmol) into a solution of *o*-phenylenediamine (0.108 g, 1 mmol) in ethanol 95% (20 ml). The mixture was refluxed with stirring for half an hour. Dichlorotetrakis(dimethylsulfoxide)ruthenium(II) (0.484 g, 1 mmol) in ethanol (20 ml) was then added. The mixture was refluxed with heating and stirring for two hours. A dark brown-red solution was obtained, wherein brown single crystals suitable for *x*-ray structure determination were formed after one week of slow evaporation of the solvent.

Refinement

H atoms of the NH₂ group were located from the difference map and isotropically refined. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H distances in the range 0.93–0.96 Å. The $U_{\rm iso}$ values were constrained to be $1.5U_{\rm eq}$ of the carrier atom for methyl H atoms and $1.2U_{\rm eq}$ for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual peak is located 0.82 Å from S1 and the deepest hole is located 0.77 Å from Ru1.

Figures

Fig. 1. The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering.

{2-[(2-Aminophenyl)iminomethyl]-4-bromophenolato- $\kappa^3 N, N', O$ }chloridobis(dimethyl sulfoxide- κS)ruthenium(II)

Crystal data	
$[Ru(C_{13}H_{10}BrN_2O)Cl(C_2H_6OS)_2]$	<i>Z</i> = 2
$M_r = 582.92$	$F_{000} = 580$
Triclinic, PT	$D_{\rm x} = 1.889 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 8.1302 (3) Å	Cell parameters from 5964 reflections
b = 12.0908 (4) Å	$\theta = 2.7 - 30.0^{\circ}$
c = 12.2445 (6) Å	$\mu = 3.07 \text{ mm}^{-1}$
$\alpha = 115.774 \ (3)^{\circ}$	T = 100.0 (1) K
$\beta = 101.712 \ (3)^{\circ}$	Block, black
$\gamma = 98.135 \ (2)^{\circ}$	$0.13 \times 0.11 \times 0.10 \text{ mm}$
$V = 1024.67 (8) \text{ Å}^3$	

Data collection

Bruker SMART APEX II CCD area-detector diffractometer	5964 independent reflections
Radiation source: fine-focus sealed tube	4532 reflections with $I > 2\sigma(I)$

Monochromator: graphite	$R_{\rm int} = 0.039$
Detector resolution: 8.33 pixels mm ⁻¹	$\theta_{max} = 30.0^{\circ}$
T = 100.0(1) K	$\theta_{\min} = 2.7^{\circ}$
ω scans	$h = -11 \rightarrow 11$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$k = -16 \rightarrow 16$
$T_{\min} = 0.686, T_{\max} = 0.755$	$l = -17 \rightarrow 17$
19338 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.041$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.105$	$w = 1/[\sigma^2(F_o^2) + (0.048P)^2 + 0.8835P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\rm max} = 0.001$
5964 reflections	$\Delta \rho_{max} = 1.25 \text{ e } \text{\AA}^{-3}$
256 parameters	$\Delta \rho_{\rm min} = -0.96 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Experimental. The low-temparture data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Ru1	0.79226 (3)	0.36415 (3)	0.12373 (3)	0.01612 (9)
Br1	1.39210 (5)	0.12129 (4)	0.45490 (4)	0.03040 (12)
Cl1	1.03365 (11)	0.35010 (9)	0.03345 (9)	0.02261 (19)
S1	0.59540 (11)	0.26471 (9)	-0.06999 (9)	0.0213 (2)
S2	0.59443 (11)	0.37706 (9)	0.22689 (9)	0.02027 (19)
O1	0.8085 (3)	0.1943 (2)	0.1222 (2)	0.0208 (5)
O2	0.4362 (3)	0.3112 (3)	-0.0816 (3)	0.0273 (6)
O3	0.6586 (3)	0.4040 (3)	0.3597 (3)	0.0292 (6)

N1	0.8072 (4)	0.5441 (3)	0.1349 (3)	0.0183 (6)
N2	0.9799 (4)	0.4710 (3)	0.2943 (3)	0.0175 (6)
C1	0.9182 (4)	0.6432 (4)	0.2601 (4)	0.0203 (7)
C2	0.9370 (5)	0.7702 (4)	0.2943 (4)	0.0230 (8)
H2A	0.8733	0.7940	0.2398	0.028*
C3	1.0502 (5)	0.8609 (4)	0.4092 (4)	0.0278 (9)
H3A	1.0655	0.9466	0.4320	0.033*
C4	1.1415 (5)	0.8257 (4)	0.4911 (4)	0.0277 (9)
H4A	1.2166	0.8882	0.5694	0.033*
C5	1.1232 (5)	0.6986 (4)	0.4588 (4)	0.0223 (8)
H5A	1.1857	0.6758	0.5147	0.027*
C6	1.0095 (4)	0.6048 (3)	0.3406 (3)	0.0199 (7)
C7	1.0733 (5)	0.4251 (4)	0.3538 (4)	0.0211 (8)
H7A	1.1549	0.4828	0.4313	0.025*
C8	1.0621 (5)	0.2923 (4)	0.3104 (3)	0.0216 (8)
C9	1.1924 (5)	0.2684 (4)	0.3865 (4)	0.0213 (8)
H9A	1.2708	0.3362	0.4599	0.026*
C10	1.2053 (5)	0.1465 (4)	0.3538 (4)	0.0251 (8)
C11	1.0886 (5)	0.0434 (4)	0.2437 (4)	0.0264 (8)
H11A	1.0990	-0.0388	0.2208	0.032*
C12	0.9588 (5)	0.0641 (4)	0.1699 (4)	0.0241 (8)
H12A	0.8812	-0.0055	0.0976	0.029*
C13	0.9381 (4)	0.1883 (4)	0.1995 (3)	0.0210 (8)
C14	0.4181 (5)	0.2370 (4)	0.1500 (4)	0.0286 (9)
H14A	0.3430	0.2444	0.2027	0.043*
H14B	0.4630	0.1642	0.1362	0.043*
H14C	0.3536	0.2270	0.0700	0.043*
C15	0.4777 (5)	0.4921 (4)	0.2296 (4)	0.0278 (9)
H15A	0.3881	0.4874	0.2690	0.042*
H15B	0.4260	0.4751	0.1442	0.042*
H15C	0.5562	0.5756	0.2769	0.042*
C16	0.6823 (5)	0.2727 (4)	-0.1903 (4)	0.0294 (9)
H16A	0.5905	0.2366	-0.2687	0.044*
H16B	0.7691	0.2260	-0.2017	0.044*
H16C	0.7339	0.3600	-0.1649	0.044*
C17	0.5297 (5)	0.0960 (4)	-0.1386 (4)	0.0340 (10)
H17A	0.4620	0.0601	-0.2258	0.051*
H17B	0.4608	0.0732	-0.0929	0.051*
H17C	0.6308	0.0638	-0.1342	0.051*
H1N1	0.861 (5)	0.552 (4)	0.076 (4)	0.023 (11)*
H2N1	0.701 (6)	0.560 (4)	0.125 (4)	0.039 (13)*
Atomic disula	comont navamators (²)		
лоти изрии	cinent pur unteters (A	· /		

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
Ru1	0.01129 (13)	0.02104 (16)	0.01781 (15)	0.00654 (11)	0.00418 (10)	0.01019 (12)
Br1	0.0246 (2)	0.0381 (2)	0.0317 (2)	0.01639 (18)	0.00366 (17)	0.0190 (2)
Cl1	0.0189 (4)	0.0307 (5)	0.0251 (5)	0.0111 (4)	0.0107 (3)	0.0160 (4)

S1	0.0160 (4)	0.0264 (5)	0.0195 (5)	0.0088 (4)	0.0024 (3)	0.0095 (4)
S2	0.0150 (4)	0.0280 (5)	0.0217 (5)	0.0085 (4)	0.0067 (3)	0.0138 (4)
01	0.0145 (11)	0.0244 (14)	0.0230 (14)	0.0068 (10)	0.0028 (10)	0.0115 (11)
O2	0.0223 (13)	0.0395 (16)	0.0247 (15)	0.0195 (12)	0.0052 (11)	0.0167 (13)
03	0.0235 (13)	0.0435 (17)	0.0223 (14)	0.0120 (13)	0.0074 (11)	0.0160 (13)
N1	0.0155 (14)	0.0196 (16)	0.0239 (17)	0.0072 (12)	0.0053 (12)	0.0134 (14)
N2	0.0149 (13)	0.0234 (16)	0.0170 (15)	0.0071 (12)	0.0069 (11)	0.0104 (13)
C1	0.0129 (15)	0.0246 (19)	0.0223 (19)	0.0083 (14)	0.0071 (13)	0.0086 (16)
C2	0.0205 (17)	0.025 (2)	0.032 (2)	0.0090 (15)	0.0131 (16)	0.0182 (17)
C3	0.0250 (19)	0.031 (2)	0.026 (2)	0.0098 (17)	0.0118 (16)	0.0094 (18)
C4	0.0216 (18)	0.029 (2)	0.023 (2)	0.0048 (16)	0.0078 (15)	0.0044 (17)
C5	0.0187 (17)	0.026 (2)	0.0219 (19)	0.0072 (15)	0.0067 (14)	0.0108 (16)
C6	0.0155 (16)	0.0236 (19)	0.0204 (19)	0.0093 (14)	0.0080 (14)	0.0080 (16)
C7	0.0177 (16)	0.026 (2)	0.0218 (19)	0.0079 (15)	0.0065 (14)	0.0128 (16)
C8	0.0190 (17)	0.033 (2)	0.0187 (18)	0.0114 (15)	0.0083 (14)	0.0143 (17)
C9	0.0190 (17)	0.027 (2)	0.0199 (19)	0.0098 (15)	0.0054 (14)	0.0119 (16)
C10	0.0187 (17)	0.037 (2)	0.026 (2)	0.0132 (17)	0.0067 (15)	0.0187 (19)
C11	0.0230 (18)	0.027 (2)	0.032 (2)	0.0107 (16)	0.0084 (16)	0.0154 (18)
C12	0.0201 (17)	0.026 (2)	0.028 (2)	0.0056 (15)	0.0051 (15)	0.0149 (17)
C13	0.0148 (16)	0.031 (2)	0.0200 (19)	0.0082 (15)	0.0063 (14)	0.0135 (17)
C14	0.0239 (19)	0.030 (2)	0.031 (2)	0.0014 (16)	0.0107 (17)	0.0144 (18)
C15	0.0231 (19)	0.035 (2)	0.030 (2)	0.0150 (17)	0.0124 (16)	0.0156 (19)
C16	0.029 (2)	0.042 (2)	0.024 (2)	0.0126 (18)	0.0112 (17)	0.0184 (19)
C17	0.029 (2)	0.034 (2)	0.028 (2)	0.0077 (18)	0.0037 (18)	0.0073 (19)

Geometric parameters (Å, °)

Ru1—N2	2.040 (3)	C4—H4A	0.9300
Ru1—O1	2.069 (2)	С5—С6	1.402 (5)
Ru1—N1	2.104 (3)	С5—Н5А	0.9300
Ru1—S2	2.2206 (9)	С7—С8	1.437 (5)
Ru1—S1	2.2511 (9)	С7—Н7А	0.9300
Ru1—Cl1	2.4319 (9)	C8—C9	1.412 (5)
Br1-C10	1.905 (3)	C8—C13	1.429 (5)
S1—O2	1.488 (3)	C9—C10	1.375 (5)
S1—C17	1.781 (4)	С9—Н9А	0.9300
S1—C16	1.790 (4)	C10-C11	1.398 (5)
S2—O3	1.474 (3)	C11—C12	1.370 (5)
S2—C15	1.784 (4)	C11—H11A	0.9300
S2—C14	1.786 (4)	C12—C13	1.428 (5)
O1—C13	1.298 (4)	C12—H12A	0.9300
N1—C1	1.461 (5)	C14—H14A	0.9600
N1—H1N1	0.95 (4)	C14—H14B	0.9600
N1—H2N1	0.90 (5)	C14—H14C	0.9600
N2—C7	1.289 (4)	C15—H15A	0.9600
N2—C6	1.426 (5)	C15—H15B	0.9600
C1—C2	1.381 (5)	C15—H15C	0.9600
C1—C6	1.392 (5)	C16—H16A	0.9600
C2—C3	1.370 (5)	C16—H16B	0.9600

C2—H2A	0.9300	C16—H16C	0.9600
C3—C4	1.377 (6)	C17—H17A	0.9600
С3—НЗА	0.9300	С17—Н17В	0.9600
C4—C5	1.387 (5)	C17—H17C	0.9600
N2—Ru1—O1	93.33 (11)	С4—С5—Н5А	120.4
N2—Ru1—N1	81.38 (12)	С6—С5—Н5А	120.4
O1—Ru1—N1	173.35 (10)	C1—C6—C5	118.5 (3)
N2—Ru1—S2	88.91 (8)	C1—C6—N2	116.3 (3)
O1—Ru1—S2	89.22 (7)	C5—C6—N2	125.2 (3)
N1—Ru1—S2	94.67 (9)	N2—C7—C8	125.5 (3)
N2—Ru1—S1	173.20 (9)	N2—C7—H7A	117.2
O1—Ru1—S1	92.61 (7)	С8—С7—Н7А	117.2
N1—Ru1—S1	92.46 (9)	C9—C8—C13	119.7 (3)
S2—Ru1—S1	94.48 (3)	C9—C8—C7	114.0 (3)
N2—Ru1—Cl1	85.04 (8)	C13—C8—C7	126.3 (3)
O1—Ru1—Cl1	87.14 (7)	C10—C9—C8	121.1 (4)
N1—Ru1—Cl1	88.38 (9)	С10—С9—Н9А	119.5
S2—Ru1—Cl1	172.75 (3)	С8—С9—Н9А	119.5
S1—Ru1—Cl1	91.95 (3)	C9—C10—C11	120.2 (3)
O2—S1—C17	108.13 (18)	C9—C10—Br1	119.0 (3)
O2—S1—C16	105.03 (18)	C11—C10—Br1	120.6 (3)
C17—S1—C16	97.9 (2)	C12-C11-C10	119.7 (4)
O2—S1—Ru1	116.15 (12)	C12—C11—H11A	120.1
C17—S1—Ru1	114.69 (15)	C10-C11-H11A	120.1
C16—S1—Ru1	113.08 (14)	C11—C12—C13	122.6 (4)
O3—S2—C15	106.04 (18)	C11—C12—H12A	118.7
O3—S2—C14	106.19 (18)	C13—C12—H12A	118.7
C15—S2—C14	99.9 (2)	O1—C13—C12	116.3 (3)
O3—S2—Ru1	116.07 (11)	O1—C13—C8	127.1 (3)
C15—S2—Ru1	113.99 (14)	C12—C13—C8	116.6 (3)
C14—S2—Ru1	113.06 (14)	S2—C14—H14A	109.5
C13—O1—Ru1	121.4 (2)	S2—C14—H14B	109.5
C1—N1—Ru1	109.8 (2)	H14A—C14—H14B	109.5
C1—N1—H1N1	106 (2)	S2—C14—H14C	109.5
Ru1—N1—H1N1	111 (2)	H14A—C14—H14C	109.5
C1—N1—H2N1	107 (3)	H14B—C14—H14C	109.5
Ru1—N1—H2N1	111 (3)	S2-C15-H15A	109.5
H1N1—N1—H2N1	112 (4)	S2—C15—H15B	109.5
C7—N2—C6	121.3 (3)	H15A—C15—H15B	109.5
C7—N2—Ru1	124.5 (3)	S2—C15—H15C	109.5
C6—N2—Ru1	114.0 (2)	H15A—C15—H15C	109.5
C2—C1—C6	121.6 (3)	H15B—C15—H15C	109.5
C2-C1-N1	120.7 (3)	S1—C16—H16A	109.5
C6—C1—N1	117.7 (3)	S1—C16—H16B	109.5
C3—C2—C1	119.4 (4)	H16A—C16—H16B	109.5
C3—C2—H2A	120.3	S1—C16—H16C	109.5
C1—C2—H2A	120.3	H16A—C16—H16C	109.5
C2—C3—C4	120.2 (4)	H16B—C16—H16C	109.5
С2—С3—НЗА	119.9	S1—C17—H17A	109.5

С4—С3—НЗА	119.9		S1—C17—H17B		109.5
C3—C4—C5	121.1 (4)		H17A—C17—H17B		109.5
С3—С4—Н4А	119.4		S1—C17—H17C		109.5
С5—С4—Н4А	119.4		H17A—C17—H17C		109.5
C4—C5—C6	119.2 (4)		Н17В—С17—Н17С		109.5
O1—Ru1—S1—O2	129.94 (15)		S2—Ru1—N2—C6		-87.7 (2)
N1—Ru1—S1—O2	-54.37 (16)		Cl1—Ru1—N2—C6		96.3 (2)
S2—Ru1—S1—O2	40.52 (14)		Ru1—N1—C1—C2		-174.7 (3)
Cl1—Ru1—S1—O2	-142.83 (14)		Ru1—N1—C1—C6		8.1 (4)
Q1—Ru1—S1—C17	2.55 (18)		C6—C1—C2—C3		1.1 (6)
N1—Ru1—S1—C17	178.24 (19)		N1-C1-C2-C3		-176.0(3)
S2—Ru1—S1—C17	-86.87(17)		C1-C2-C3-C4		-1.5 (6)
C11— $Ru1$ — $S1$ — $C17$	89 78 (17)		$C^2 - C^3 - C^4 - C^5$		10(6)
01—Ru1—S1—C16	-10852(17)		C_{3} C_{4} C_{5} C_{6}		-0.1.(6)
$N1_Ru1_S1_C16$	67.17.(18)		$C_{2}^{2} = C_{1}^{2} = C_{2}^{2} = C_{2}^{2}$		-0.3(5)
$S^2 = Ru1 = S1 = C16$	162.06 (16)		N1 - C1 - C6 - C5		176.9(3)
$S_2 = Ru_1 = S_1 = C_{10}$	-21.29(16)		$C_{1} = C_{1} = C_{0} = C_{3}$		-179.6(3)
$N_2 = R_{11} = S_2 = O_2^2$	-22.80(16)		$C_2 - C_1 - C_0 - N_2$		-24(5)
$n_2 - Ru_1 - s_2 - 0_3$	22.80(10)		$\frac{1}{100} = \frac{1}{100} = \frac{1}$		2.4(5)
N1 = Ru1 = S2 = O3	104.06(15)		C4 = C5 = C6 = N2		-0.2(3)
N1 - Ku1 - S2 - O3	-104.00(10)		C4 - C3 - C0 - N2		179.0(3)
SI—KuI—S2—O3	103.10 (14)		$C = N_2 = C_0 = C_1$		1/1.1 (3)
N_2 —Ru1—S2—C15	100.87 (17)		Ru1 - N2 - C0 - C1		-4.9(4)
01—Ru1—S2—C15	-165./8(1/)		C/-N2-C6-C5		-8.2 (5)
NI—Rul—S2—C15	19.61 (17)		Ru1 - N2 - C6 - C5		175.8 (3)
S1—Ru1—S2—C15	-73.23 (15)		C6—N2—C7—C8		-175.3 (3)
N2—Ru1—S2—C14	-145.87 (17)		Ru1—N2—C7—C8		0.3 (5)
O1—Ru1—S2—C14	-52.52 (17)		N2—C7—C8—C9		173.2 (3)
N1—Ru1—S2—C14	132.87 (17)		N2—C7—C8—C13		-4.9 (6)
S1—Ru1—S2—C14	40.03 (16)		C13—C8—C9—C10		1.8 (6)
N2—Ru1—O1—C13	-14.2 (3)		C7—C8—C9—C10		-176.4 (3)
S2—Ru1—O1—C13	-103.1 (3)		C8—C9—C10—C11		0.0 (6)
S1—Ru1—O1—C13	162.5 (3)		C8—C9—C10—Br1		176.4 (3)
Cl1—Ru1—O1—C13	70.6 (3)		C9—C10—C11—C12		-1.4 (6)
N2—Ru1—N1—C1	-8.0 (2)		Br1—C10—C11—C12		-177.7 (3)
S2—Ru1—N1—C1	80.1 (2)		C10-C11-C12-C13		0.9 (6)
S1—Ru1—N1—C1	174.9 (2)		Ru1—O1—C13—C12		-165.0 (2)
Cl1—Ru1—N1—C1	-93.3 (2)		Ru1—O1—C13—C8		14.8 (5)
O1—Ru1—N2—C7	7.3 (3)		C11—C12—C13—O1		-179.3 (4)
N1—Ru1—N2—C7	-168.7 (3)		C11—C12—C13—C8		0.9 (6)
S2—Ru1—N2—C7	96.4 (3)		C9—C8—C13—O1		178.0 (3)
Cl1—Ru1—N2—C7	-79.6 (3)		C7—C8—C13—O1		-4.0 (6)
O1—Ru1—N2—C6	-176.8 (2)		C9—C8—C13—C12		-2.2 (5)
N1—Ru1—N2—C6	7.2 (2)		C7—C8—C13—C12		175.8 (4)
Hydrogen-bond geometry (Å. °)					
——н… л	ת	_н	H A	D 4	ח נו 4
	<i>D</i> -		$11^{-1}A$	D^{-A}	$D = \Pi^{\dots} A$
NI-HINI···CII	0.9	· (()	2.34 (3)	5.255 (4)	137 (4)

N1—H2N1···O2 ⁱⁱ	0.91 (5)	2.22 (5)	2.975 (5)	141 (4)
C2—H2A····O2 ⁱⁱ	0.93	2.58	3.267 (5)	131
C5—H5A···O3 ⁱⁱⁱ	0.93	2.40	3.323 (6)	174
C7—H7A···O3 ⁱⁱⁱ	0.93	2.35	3.263 (5)	168
C16—H16B…Cl1	0.96	2.83	3.222 (4)	106
C14—H14A····Cg2 ^{iv}	0.96	2.73	3.634 (5)	157
C16—H16B···Cg1 ⁱ	0.96	3.09	3.561 (5)	112

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*; (ii) -*x*+1, -*y*+1, -*z*; (iii) -*x*+2, -*y*+1, -*z*+1; (iv) *x*-1, *y*, *z*.

Fig. 2

